Fluctuations of the Number of Critical Points of Random Trigonometric Polynomials*

نویسنده

  • LIVIU I. NICOLAESCU
چکیده

Denote by Zν the number of critical points of a random trigonometric polynomial of degree ≤ ν. We prove that as ν → ∞ the expectation of Zν is asymptotic to 2ν √ 3 5 while its variance is asymptotic to δ∞ν where δ∞ ≈ 0.35. Mathematics Subject Classification 2010: 33B10, 42A61, 60D99.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistics of Linear Families of Smooth Functions on Knots

Given a knot K in an Euclidean space R, and a finite dimensional subspace V ⊂ C∞(K), we express the expected number of critical points of a random function in V in terms of an integral-geometric invariant of K and V . When V consists of the restrictions to K of homogeneous polynomials of degree ` on R, this invariant takes the form of total curvature of a certain immersion of K. In particular, ...

متن کامل

Random Sampling of Multivariate Trigonometric Polynomials

We investigate when a trigonometric polynomial p of degree M in d variables is uniquely determined by its sampled values p(xj) on a random set of points xj in the unit cube (the “sampling problem for trigonometric polynomials”) and estimate the probability distribution of the condition number for the associated Vandermonde-type and Toeplitz-like matrices. The results provide a solid theoretical...

متن کامل

On Classifications of Random Polynomials

 Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...

متن کامل

Probability against Condition Number and Sampling of Multivariate Trigonometric Random Polynomials

PROBABILITY AGAINST CONDITION NUMBER AND SAMPLING OF MULTIVARIATE TRIGONOMETRIC RANDOM POLYNOMIALS ALBRECHT BÖTTCHER AND DANIEL POTTS Abstract. The difficult factor in the condition number of a large linear system is the spectral norm of . To eliminate this factor, we here replace worst case analysis by a probabilistic argument. To be more precise, we randomly take from a ball with the uniform ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013